A linear discriminant analysis method based on mutual information maximization
نویسندگان
چکیده
We present a new linear discriminant analysis method based on information theory, where the mutual information between linearly transformed input data and the class labels is maximized. First, we introduce a kernel-based estimate of mutual information with a variable kernel size. Furthermore, we devise a learning algorithm that maximizes the mutual information w.r.t. the linear transformation. Two experiments are conducted: the first one uses a toy problem to visualize and compare the transformation vectors in the original input space; the second one evaluates the performance of the method for classification by employing cross-validation tests on four datasets from the UCI repository. Various classifiers are investigated. Our results show that this method can significantly boost class separability over conventional methods, especially for nonlinear classification. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
On the relation between discriminant analysis and mutual information for supervised linear feature extraction
This paper provides a unifying view of three discriminant linear feature extraction methods: Linear Discriminant Analysis, Heteroscedastic Discriminant Analysis and Maximization of Mutual Information. We propose a model-independent reformulation of the criteria related to these three methods that stresses their similarities and elucidates their differences. Based on assumptions for the probabil...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملFault detection and identification with a new feature selection based on mutual information
This paper presents a fault diagnosis procedure based on discriminant analysis and mutual information. In order to obtain good classification performances, a selection of important features is done with a new developed algorithm based on the mutual information between variables. The application of the new fault diagnosis procedure on a benchmark problem, the Tennessee Eastman Process, shows bet...
متن کاملInformative Discriminant Analysis
We introduce a probabilistic model that generalizes classical linear discriminant analysis and gives an interpretation for the components as informative or relevant components of data. The components maximize the predictability of class distribution which is asymptotically equivalent to (i) maximizing mutual information with the classes, and (ii) finding principal components in the so-called le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011